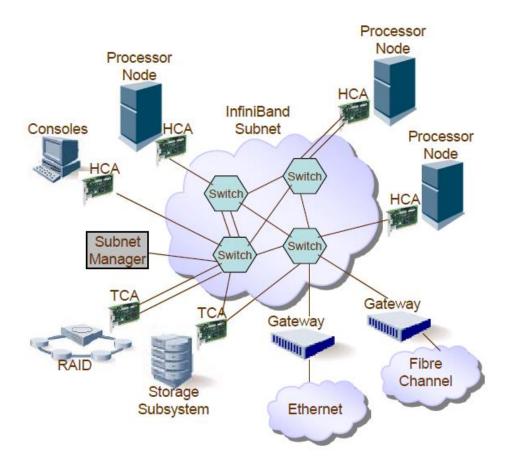


InfiniBand Technology

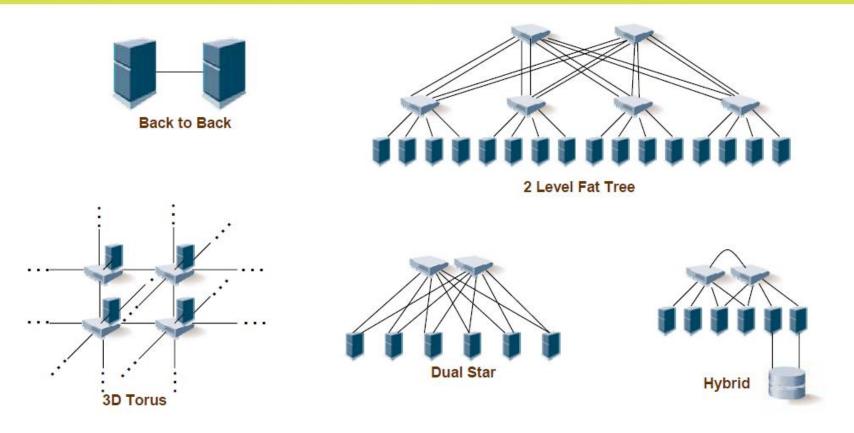
What is InfiniBand?



- Industry standard defined by the InfiniBand Trade Association (IBTA)
 Originated in 1999
- Input/output architecture used to interconnect servers, communications infrastructure equipment, storage and embedded systems
- Pervasive, low-latency, high-bandwidth interconnect which requires low processing overhead and is ideal to carry multiple traffic types (clustering, communications, storage, management) over a single connection.
- As a mature and field-proven technology, InfiniBand is used in thousands of data centers, high-performance compute clusters and embedded applications that scale from small scale to large scale

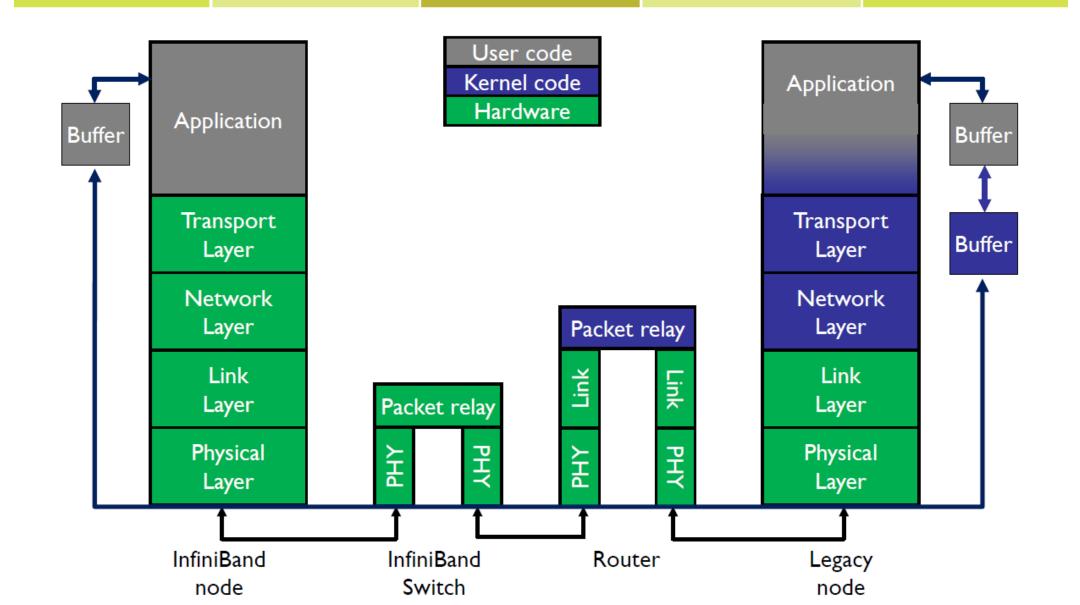
The InfiniBand Architecture

- Defines System Area Network architecture
- Architecture supports
 - Host Channel Adapters (HCA)
 - Target Channel Adapters (TCA)
 - Switches
 - Routers
- Facilitated HW design for
 - Low latency / high bandwidth
 - Transport offload



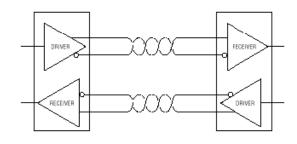
- Serial high-bandwidth, ultra-low-latency links
- □ Reliable, lossless, self-managing fabric
- Full CPU offload
- Quality Of Service
- Cluster scalability, flexibility and simplified management

InfiniBand Topologies



- Example topologies commonly used
- Architecture does not limit topology
- Modular switches are based on fat tree architecture

InfiniBand Network Stack


Data transfer over serial bit streams

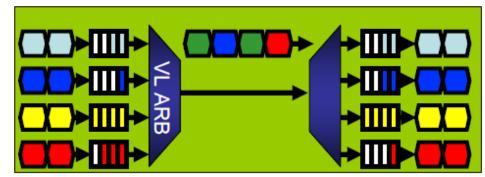
Auto-negotiation of link speed and width

- Power management
- Bit encoding
- Control symbols

Link Speed (10⁹ bit/sec)

	Lane Speed →	SDR	DDR	QDR	FDR	EDR (25GHz)	
_	Link Width ↓	(2.5GHz)	(5 GHz)	(10 GHz)	(14GHz)		
	1X	2.5	5	10	14	25	
	4X	10	20	40	56	100	
	8X	20	40	80	102	200	
	12X	30	60	120	168	300	

Link Layer



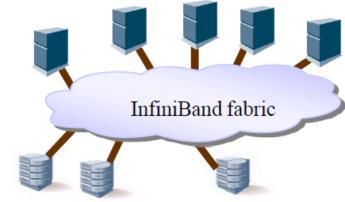
Addressing and Switching

- Local Identifier (LID) addressing
- Unicast LID 48K addresses
- Multicast LID up to 16K addresses
- Efficient linear lookup
- Cut through switching supported
- Multi-pathing support through LMC
- Independent Virtual Lanes
 - Flow control (lossless fabric)
 - Service level
 - VL arbitration for QoS

Data Integrity

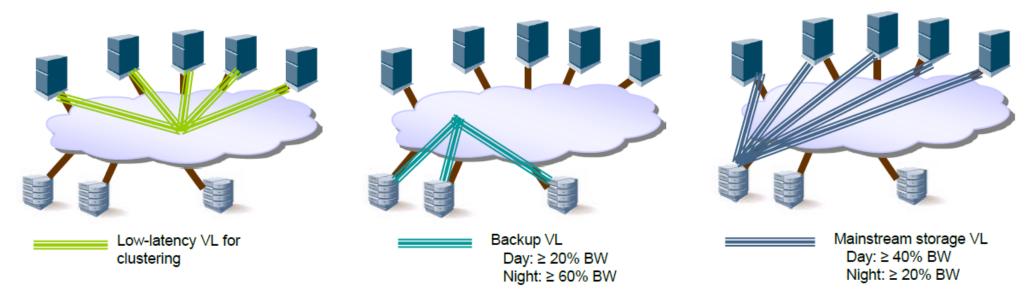
- Invariant CRC
- Variant CRC

Independent Virtual Lanes (VLs)



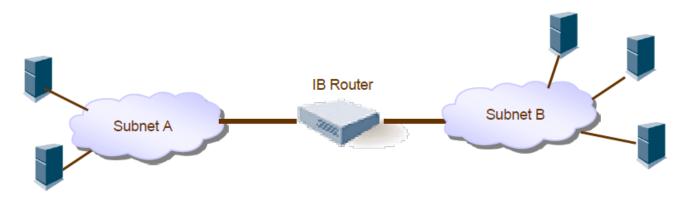
H/L Weighted Round Robin (WRR) VL Arbitration

Virtual Lanes and Scheduling



Physical:

 Dynamically configure and adjust VLs and scheduling to match application performance needs


Logical:

Global Identifier (GID) addressing
 Based on IPv6 addressing scheme
 GID = {64 bit GID prefix, 64 bit GUID}
 GUID = Global Unique Identifier (64 bit EUI-64)
 GUID 0 – assigned by the manufacturer
 GUID 1..(N-1) – assigned by the subnet manager

Used for multicast distribution within end nodes

Queue Pair (QP) – transport endpoint

Asynchronous interface

□ Send Queue, Receive Queue, Completion Queue

Full transport offload

□ Segmentation, reassembly, timers, retransmission, etc...

Kernel bypass

Enables low latency and CPU offload

- Exposure of application buffers to the network
- Polling and interrupt models supported

InfiniBand Packet Format

Education SNIA

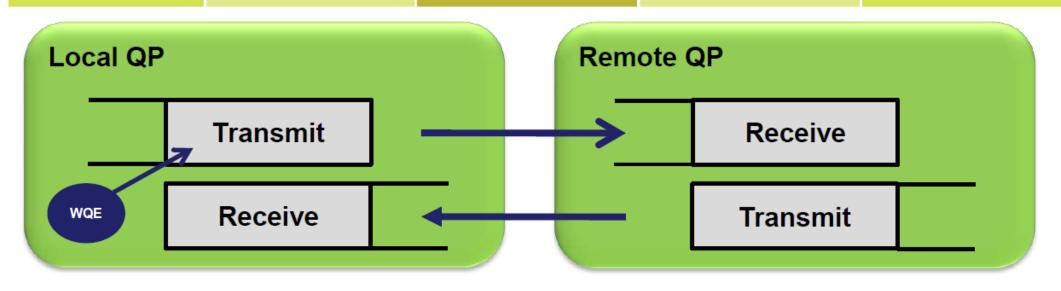
InfiniBand D	ata Packet
--------------	------------

	VL	Ľ	∨er	SL	rsvd LNH	DLID
	rsvd		svd Len		en	SLID
1						U 12 Local Pouto Heado

LRH L2-Local Route Header

Opcode		SMPad TVer Partition Key				
rsvd		Destination QP				
А	rsvd	PSN				

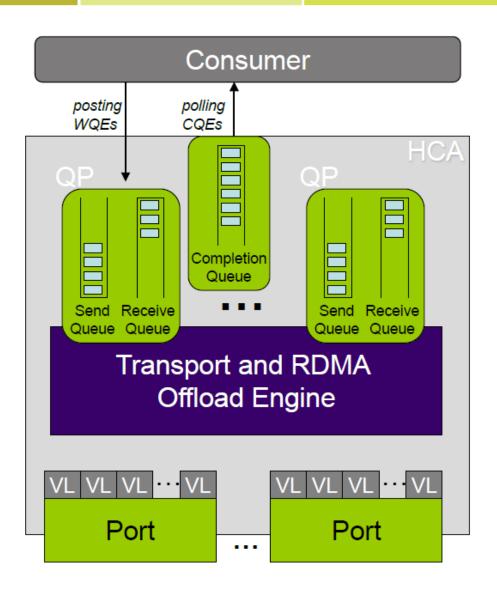
BTH L4-Base Transport Header


IPVer	TClass	Flow Label					
	Payload Lei	า	Next Header Hop				
SGID[127:96]							
SGID[95:64]							
SGID[63:32]							
SGID[31:0]							
DGID[127:96]							
DGID[95:64]							
DGID[63:32]							
	DGID[31:0]						

GRH (Optional) L3-Global Route Header

Extended headers: •Reliable Datagram ETH (4B) •Datagram ETH (8B) •RDMA ETH (16B) •Atomic ETH (28B) •ACK ETH (4B) •Atomic ACK ETH (8B) •Immediate Data ETH (4B) •Invalidate ETH (4B)

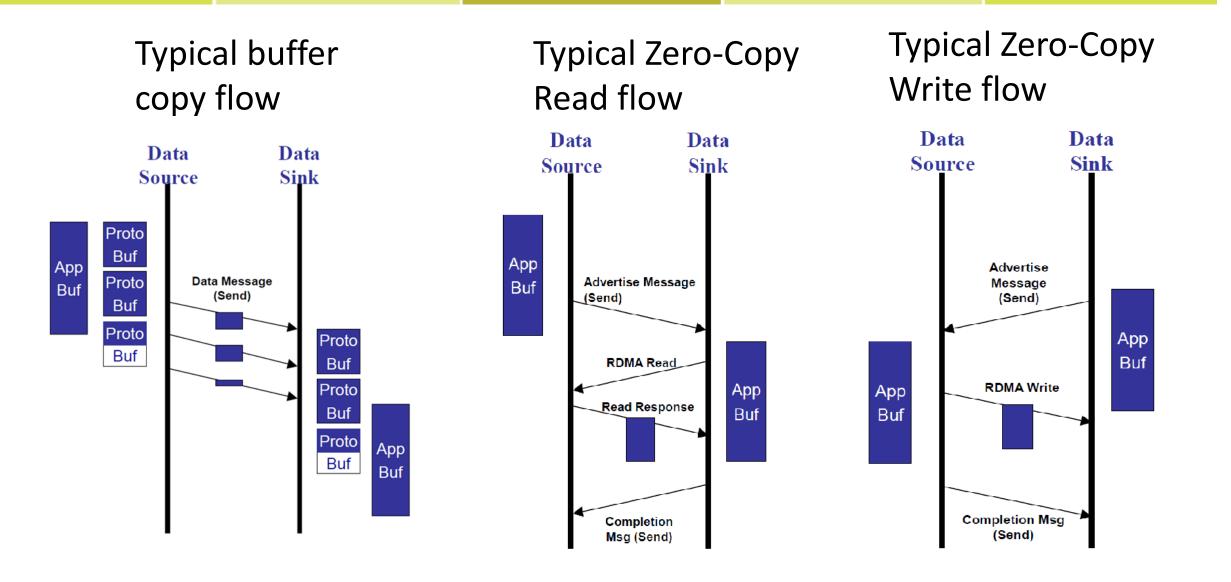
Transport Layer – Queue Pairs



- QPs are in pairs (Send/Receive)
- Work Queue is the consumer/producer interface to the fabric
- The consumer/producer initiates a Work Queue Element (WQE)
- The channel adapter executes the work request
- The channel adapter notifies on completion or errors by writing a Completion Queue Element (CQE) to a Completion Queue (CQ)

Transport – HCA Model

- □ Asynchronous interface
 - Consumer posts work requests
 - HCA processes
 - Consumer polls completions
- Transport executed by HCA
- I/O channel exposed to the application

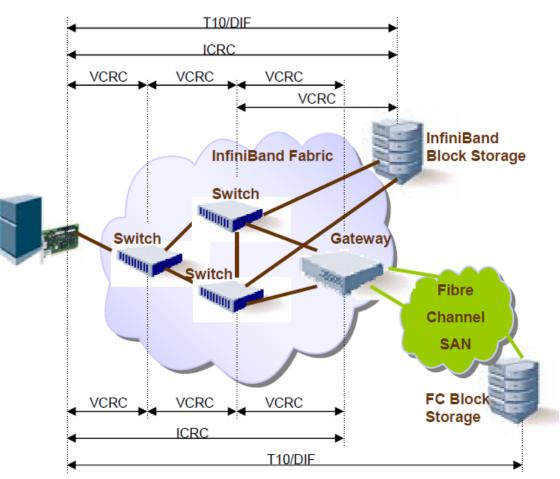

Transport Layer – Types Transfer Operations

SEND

- Read message from HCA local system memory
- Transfers data to responder HCA Receive Queue logic
- Does not specify where the data will be written in remote memory
- Immediate Data option available
- RDMA Read
 - Responder HCA reads its local memory and returns it to the requesting HCA
 - Requires remote memory access rights, memory start address and message length
- RDMA Write
 - Requester HCA sends data to be written into the responder HCA system memory
 - Requires remote memory access rights, memory start address and message length

SDC STORAGE DEVELOPER CONFERENCE

InfiniBand Data Integrity

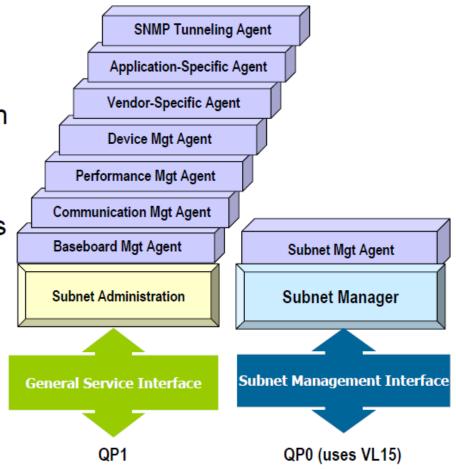


Hop by hop

- VCRC 16 bit CRC
- CRC16 0x100B

End to end

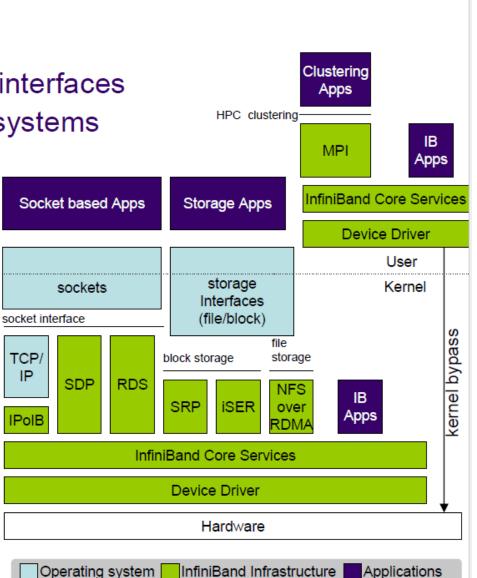
- ICRC 32 bit CRC
- CRC32 0x04C11DB7
- Same CRC as Ethernet
- Application level
 - T10/DIF Logical Block Guard
 - > Per block CRC
 - 16 bit CRC 0x8BB7



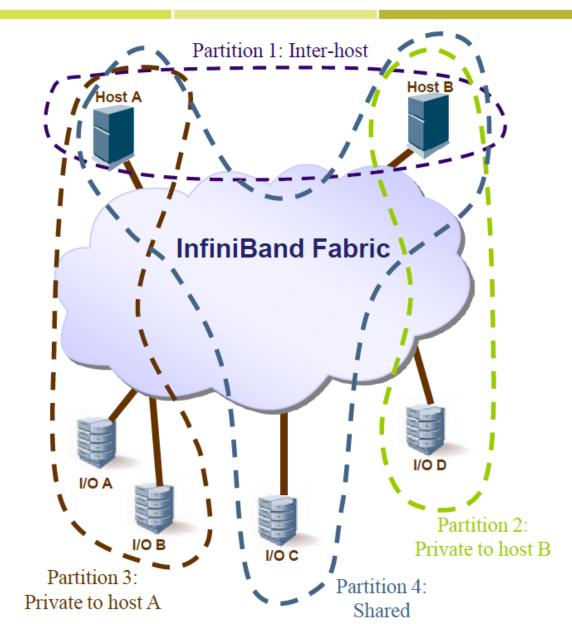
Management Model

Subnet Manager (SM)

- Configures/Administers fabric topology
- Implemented at an end-node or a switch
- Active/Passive model when more than one SM is present
- Talks with SM Agents in nodes/switches
- Subnet Administration
 - Provides path records
 - QoS management
- Communication Management
 - Connection establishment processing


Upper Layer Protocols

ULPs connect InfiniBand to common interfaces


Supported on mainstream operating systems

- Clustering
 - MPI (Message Passing Interface)
 - RDS (Reliable Datagram Socket)
- Network
 - IPoIB (IP over InfiniBand)
 - SDP (Socket Direct Protocol)
- Storage
 - SRP (SCSI RDMA Protocol)
 - iSER (iSCSI Extensions for RDMA)
 - NFSoRDMA (NFS over RDMA)

Partitions

- Logically divide fabric into isolated domains
- Partial and full membership per partition
- Partition filtering at switches
- Similar to
 - FC Zoning
 - 802.1Q VLANs

High Availability and Redundancy

- Multi-port HCAs
- Redundant fabric topologies
- Link layer multi-pathing (LMC)
- Automatic Path Migration (APM)
- ULP High Availability
 - Application-level multi-pathing (SRP/iSER)
 - Teaming/bonding (IPoIB)

Glossary

- APM Automatic Path Migration
- BECN Backward Explicit Congestion Notification
- BTH Base Transport Header
- CFM Configuration Manager
- CQ Completion Queue
- CQE Completion Queue Element
- CRC Cyclic Redundancy Check
- DDR Double Data Rate
- DIF Data Integrity Field
- FC Fibre Channel
- FECN Forward Explicit Congestion Notification
- GbE Gigabit Ethernet
- GID Global IDentifier
- GRH Global Routing Header
- GUID Globally Unique IDentifier
- HCA Host Channel Adapter
- IB InfiniBand
- IBTA InfiniBand Trade Association
- ICRC Invariant CRC
- IPoIB Internet Protocol Over InfiniBand
- IPv6 Internet Protocol Version 6
- iSER iSCSI Extensions for RDMA
- LID Local IDentifier
- LMC Link Mask Control
- LRH Local Routing Header
- LUN Logical Unit Number

- MPI Message Passing Interface
- MR Memory Region
- NFSoRDMA NFS over RDMA
- OSD Object based Storage Device
- OS Operating System
- PCIe PCI Express
- PD Protection Domain
- QDR Quadruple Data Rate
- QoS Quality of Service
- QP Queue Pair
- RDMA Remote DMA
- RDS Reliable Datagram Socket
- RPC Remote Procedure Call
- SAN Storage Area Network
- SDP Sockets Direct Protocol
- SDR Single Data Rate
- SL Service Level
- SM Subnet Manager
- SRP SCSI RDMA Protocol
- TCA Target Channel Adapter
- ULP Upper Layer Protocol
- VCRC Variant CRC
- VL Virtual Lane
- WQE Work Queue Element
- WRR Weighted Round Robin